Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Alterations in aortic cellular constituents during thoracic aortic aneurysm development: myofibroblast-mediated vascular remodeling.

The present study tested the hypothesis that changes in the resident endogenous cellular population accompany alterations in aortic collagen and elastin content during thoracic aortic aneurysm (TAA) development in a murine model. Descending thoracic aortas were analyzed at various time points (2, 4, 8, and 16 weeks) post-TAA induction (0.5 M CaCl2, 15 minutes). Aortic tissue sections were subjected to histological staining and morphometric analysis for collagen and elastin, as well as immunostaining for cell-type-specific markers to quantify fibroblasts, myofibroblasts, and smooth-muscle cells. Results were compared with reference control mice processed in the same fashion. Aortic dilatation was accompanied by changes in the elastic architecture that included: a decreased number of elastic lamellae (from 6 to 4); altered area fraction of elastin (elevated at 4 weeks and decreased at 16 weeks); and a decreased area between elastic lamellae (minimum reached at 4 weeks). Total collagen content did not change over time. Increased immunoreactivity for fibroblast and myofibroblast markers was observed at 8- and 16-week post-TAA-induction, whereas immunoreactivity for smooth-muscle cell markers peaked at 4 weeks and returned to baseline by 16 weeks. Therefore, this study demonstrated that changes in aortic elastin content were accompanied by the emergence of a subset of fibroblast-derived myofibroblasts whose altered phenotype may play a significant role in TAA development through the enhancement of extracellular matrix proteolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app