COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fear extinction across development: the involvement of the medial prefrontal cortex as assessed by temporary inactivation and immunohistochemistry.

Journal of Neuroscience 2009 September 3
Extinction in adult animals, including humans, appears to involve the medial prefrontal cortex (mPFC). However, the role of mPFC in extinction across development has not yet been studied. Given several recent demonstrations of developmental differences in extinction of conditioned fear at a behavioral level, different neural circuitries may mediate fear extinction across development. In all experiments, noise conditioned stimulus (CS) and shock unconditioned stimulus (US) were used. In experiment 1A, temporary unilateral inactivation of the mPFC during extinction training impaired long-term extinction the following day in postnatal day 24 (P24) rats but not in P17 rats. In experiment 1B, bilateral inactivation of the mPFC again failed to disrupt long-term extinction in P17 rats. In experiment 2, extinction training increased phosphorylated mitogen-activated protein kinase (pMAPK) in the mPFC for P24 rats but not for P17 rats, whereas rats of both ages displayed elevated pMAPK in the amygdala. Across both ages, "not trained," "reactivated," and "no extinction" control groups expressed very low numbers of pMAPK-immunoreactive (IR) neurons across both neural structures. This result indicates that the mere conditioning experience, the exposure to the CS, or the expression of CS-elicited fear in and of itself is not sufficient to explain the observed increase in pMAPK-IR neurons in the mPFC and/or the amygdala after extinction. Together, these findings show that extinction in P17 rats does not involve the mPFC, which has important theoretical and clinical implications for the treatment of anxiety disorders in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app