[Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications]

Maria Wideł, Waldemar Przybyszewski, Joanna Rzeszowska-Wolny
Postȩpy Higieny i Medycyny Doświadczalnej 2009 August 18, 63: 377-88
It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a potentially harmful or a useful event in radiotherapy. The elevation of damage to tumor cells not directly hit by radiation or the initiation of tumor cell differentiation may increase the therapeutic ratio. If, however, molecular species secreted by irradiated tumor cells in vivo damage neighboring normal cells (epithelial and endothelial cells, fibroblasts, or lymphocytes), the bystander effect would be harmful and could lead to increased side effects in normal tissue. This is especially important in modern radiotherapy, as 3D conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) are aimed at diminishing the radiation dose in normal tissues. Recent in vivo studies on animals indicate that bystander effects may appear in organs and tissues remote from the irradiated field and the extension of tissue damage seems to be tissue-type dependent. However, recent experimental results indicate that non-irradiated cells that are neighbors of irradiated cells may diminish radiation damage in the radiation-focused cells. Less is known about the bystander effect during fractionated irradiation. Thus the clinical implications of the bystander effect and its possible modification for radiotherapeutic usefulness is still under debate.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"