JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Peptidyl-prolyl isomerase activity in chloroplast thylakoid lumen is a dispensable function of immunophilins in Arabidopsis thaliana.

Chloroplast thylakoid lumen of Arabidopsis thaliana contains 16 immunophilins, five cyclophilins and 11 FK506-binding proteins (FKBPs), which are considered protein folding catalysts, although only two of them, AtFKBP13 and AtCYP20-2, possess peptidyl-prolyl cis/trans isomerase (PPIase) activity. To address the question of the physiological significance of this activity, we obtained and characterized Arabidopsis mutants deficient in the most active PPIase, AtFKBP13, and a double mutant deficient in both AtFKBP13 and AtCYP20-2. Two-dimensional gel electrophoresis of isolated thylakoid lumen, as well as immunoblotting analyses of major photosynthetic membrane protein complexes did not reveal differences in protein composition between the mutants and the wild type. No changes in the relative content of photosynthetic proteins were found by differential stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS) analyses. PPIase activity was measured in vitro in isolated thylakoid lumen samples using two different synthetic peptide substrates. Depending on the peptide substrate used for the assay, the PPIase activity in the thylakoid lumen of the mutants lacking either AtFKBP13 or both AtFKBP13 and AtCYP20-2 was as low as 10 or 2% of that in the wild type. Residual PPIase activity detected in the double mutant originated from AtCYP20-3, a cyclophilin from chloroplast stroma contaminating thylakoid lumen preparations. None of the mutants differed from the wild-type plants when grown under normal, cold stress or high light conditions. It is concluded that cellular functions of immunophilins in the thylakoid lumen of chloroplasts are not related to their PPIase capacity and should be investigated beyond this enzymatic activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app