EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sensitivity enhancement in DNA hybridization assay using gold nanoparticle-labeled two reporting probes.

A simple and sensitive method for DNA detection using gold nanoparticle (AuNP) two-probe detection system (AuNP-TP) was developed. Preliminary experiment was carried out by optimizing slide types, blocking agents and hybridization times. Fluorescent-labeled probes were used along with AuNP-labeled probes to confirm specific binding event between target DNA and probes. The sensitivities between AuNP single-probe (AuNP-SP) and AuNP-TP systems using sandwich-typed assay were compared. The AuNP-TP on epoxide-coated (EP) slides increased sensitivity 1000-fold at the detection limit of 100fM when compared to the AuNP-SP. This result indicates that the assay sensitivity was simply enhanced by simultaneous adding two AuNP labeled probes which selectively recognize different regions of the target DNA. The concept of AuNP-TP could potentially be applied to a macroarray format to detect multiple DNA targets simultaneously; thereby making the assay becomes more affordable and more sensitive.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app