JOURNAL ARTICLE

Critical interfaces in organic solar cells and their influence on the open-circuit voltage

William J Potscavage, Asha Sharma, Bernard Kippelen
Accounts of Chemical Research 2009 November 17, 42 (11): 1758-67
19708653
Organic photovoltaics, which convert sunlight into electricity with thin films of organic semiconductors, have been the subject of active research over the past 20 years. The global energy challenge has greatly increased interest in this technology in recent years. Low-temperature processing of organic small molecules from the vapor phase or of polymers from solution can confer organic semiconductors with a critical advantage over inorganic photovoltaic materials since the high-temperature processing requirements of the latter limit the range of substrates on which they can be deposited. Unfortunately, despite significant advances, the power conversion efficiency of organic solar cells remains low, with maximum values in the range of 6%. A better understanding of the physical processes that determine the efficiency of organic photovoltaic cells is crucial to enhancing their competitiveness with other thin-film technologies. Maximum values for the photocurrent can be estimated from the light-harvesting capability of the individual molecules or polymers in the device. However, a better understanding of the materials-level processes, particularly those in layer-to-layer interfaces, that determine the open-circuit voltage (V(OC)) in organic solar cells is critical and remains the subject of active research. The conventional wisdom is to use organic semiconductors with smaller band gaps to harvest a larger portion of the solar spectrum. This method is not always an effective prescription for increasing efficiency: it ignores the fact that the value of V(OC) is generally decreased in devices employing materials with smaller band gaps, as is the case with inorganic semiconductors. In this Account, we discuss the influence of the different interfaces formed in organic multilayer photovoltaic devices on the value of V(OC); we use pentacene-C(60) solar cells as a model. In particular, we use top and bottom electrodes with different work function values, finding that V(OC) is nearly invariant. In contrast, studies on devices incorporating hole-transport layers with different ionization potentials confirm that the value of V(OC) depends largely on the relative energy levels of the donor and acceptor species that form the essential heterojunction. An analysis of the properties of solar cells using equivalent-circuit methods reveals that V(OC) is proportional to the logarithm of the ratio of the photocurrent density J(ph) divided by the reverse saturation current density J(0). Hence, an understanding of the physical origin of J(0) directly yields information on what limits V(OC). We assign the physical origin of J(0) to the thermal excitation of carriers from the donor to the acceptor materials that form the organic heterojunction. Finally, we show that the solution to achieving higher power conversion efficiency in organic solar cells will be to control simultaneously the energetics and the electronic coupling between the donor and acceptor materials, in both the ground and excited state.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19708653
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"