Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Natural organic matter enhanced mobility of nano zerovalent iron.

Column studies showed that the mobility of nanometer-sized zerovalent iron (nZVI) through granular media is greatly increased in the presence of natural organic matter (NOM). At NOM concentrations of 20 mg/L or greater, the nZVI was highly mobile during transport experiments in 0.15-m long columns packed with medium sand. Below 20 mg/L NOM, mobility of the nZVI was less; however, even at 2 mg/L the nZVI showed significantly increased mobility compared to the no-NOM case. Spectrophotometric and aggregation studies of nZVI suspensions in the presence of NOM suggest that sorption of the NOM onto the nZVI, resulting in a reduced sticking coefficient, may be the primary mechanism of enhanced mobility. Modeling the mobility of nZVI in porous media with filtration theory is challenging, but calibration of a simple model with experimental results from the column experiments reported here allows simulation of transport distances during injection. The simulation results show that the increased mobility due to NOM combined with the decrease in mobility due to decreased velocity with distance from an injection well could produce an injection zone that is wide enough to be useful for remediation but small enough to avoid reaching unwanted receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app