JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury.

Glia 2010 Februrary
Microglia are key players of the immune response in the central nervous system (CNS) and, being the resident innate immune cells, they are responsible for the early control of infections and for the recruitment of cells of the adaptive immune system required for pathogen clearance. The innate and adaptive immune responses triggered by microglia include the release of proinflammatory mediators. Although an efficient immune response is required for the defense against invading pathogens, an inflammatory response in the CNS may also lead to tissue injury and neurodegeneration. Engagement of Toll-like receptors (TLRs), a major family of pattern recognition receptors that mediate innate immunity but also link with the adaptive immune response, provides an important mechanism by which microglia are able to sense both pathogen- and host-derived ligands within the CNS. Although there is an increasing body of evidence that TLR signaling mediates beneficial effects in the CNS, it has become clear that TLR-induced activation of microglia and the release of proinflammatory molecules are responsible for neurotoxic processes in the course of various CNS diseases. Thus, the functional outcome of TLR-induced activation of microglia in the CNS depends on a subtle balance between protective and harmful effects. This review focuses on the neurodegenerative effects of TLR signaling in the CNS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app