JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

SMC1A expression and mechanism of pathogenicity in probands with X-Linked Cornelia de Lange syndrome.

Human Mutation 2009 November
Cornelia de Lange Syndrome (CdLS) is a dominantly inherited heterogeneous genetic disorder with multisystem abnormalities. Sixty percent of probands with CdLS have heterozygous mutations in the Nipped-B-like (NIPBL) gene, 5% have mutations in the SMC1A gene, and one proband was found to have a mutation in the SMC3 gene. Cohesin is a multisubunit complex consisting of a SMC1A and SMC3 heterodimer and two non-SMC subunits. SMC1A is located on the human X chromosome and is reported to escape X inactivation. Twenty-nine unrelated CdLS probands with 21 unique SMC1A mutations have been identified including seven males. All mutations identified to date are either missense or small deletions, with all presumably preserving the protein open reading frame. Both wild-type and mutant alleles are expressed. Females quantitatively express twice the amount of SMC1A mRNA compared to males. The transcriptional profiling of 23 selected genes is different in SMC1A mutant probands, controls, and NIPBL mutant probands. These results suggest that mechanistically SMC1A-related CdLS is not due to altered levels of the SMC1A transcript, but rather that the mutant proteins maintain a residual function in males and enact a dominant negative effect in females.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app