JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition.

Idiopathic pulmonary fibrosis (IPF) is a devastating disease with no known effective pharmacological therapy. The fibroblastic foci of IPF contain activated myofibroblasts that are the major synthesizers of type I collagen. Transforming growth factor (TGF)-beta1 promotes differentiation of fibroblasts into myofibroblasts in vitro and in vivo. In the current study, we investigated the molecular link between TGF-beta1-mediated myofibroblast differentiation and histone deacetylase (HDAC) activity. Treatment of normal human lung fibroblasts (NHLFs) with the pan-HDAC inhibitor trichostatin A (TSA) inhibited TGF-beta1-mediated alpha-smooth muscle actin (alpha-SMA) and alpha1 type I collagen mRNA induction. TSA also blocked the TGF-beta1-driven contractile response in NHLFs. The inhibition of alpha-SMA expression by TSA was associated with reduced phosphorylation of Akt, and a pharmacological inhibitor of Akt blocked TGF-beta1-mediated alpha-SMA induction in a dose-dependent manner. HDAC4 knockdown was effective in inhibiting TGF-beta1-stimulated alpha-SMA expression as well as the phosphorylation of Akt. Moreover, the inhibitors of protein phosphatase 2A and 1 (PP2A and PP1) rescued the TGF-beta1-mediated alpha-SMA induction from the inhibitory effect of TSA. Together, these data demonstrate that the differentiation of NHLFs to myofibroblasts is HDAC4 dependent and requires phosphorylation of Akt.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app