COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparison of effects of compost amendment and of single-strain inoculation on root bacterial communities of young cucumber seedlings.

Compost amendment and inoculations with specific microorganisms are fundamentally different soil treatment methods, commonly used in agriculture for the improvement of plant growth and health. Although distinct, both methods affect the rhizosphere and the plant roots. In the present study we used a 16S rRNA gene approach to achieve an overview of early consequences of these treatments on the assemblage of plant root bacterial communities. For this purpose, cucumber seedlings were grown, under controlled conditions, in perlite potting mix amended with biosolid compost or straw compost, or inoculated with Streptomyces spp. A uniform trend of response of root bacterial communities for all treatments was observed. Root bacterial density, measured as bacterial targets per plant tef gene by real-time PCR, was reduced in 31 to 67%. In addition, increased taxonomic diversity accompanied shifts in composition (alpha-diversity). The magnitude of change in these parameters relative to the perlite control varied between the different treatments but not in relation to the treatment method (compost amendments versus inoculations). Similarity between the compositions of root and of potting mix bacterial communities (beta-diversity) was relatively unchanged. The abundance of Oxalobacteraceae was >50% of the total root bacterial community in the untreated perlite. Root domination by this group subsided >10-fold (straw compost) to >600-fold (Streptomyces sp. strain S1) after treatment. Thus, loss of dominance appears to be the major phenomenon underlining the response trend of the root bacterial communities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app