JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Treatment with TNF-alpha and IFN-gamma alters the activation of SER/THR protein kinases and the metabolic response to IGF-I in mouse c2c12 myogenic cells.

UNLABELLED: The aim of this study was to compare the effects of TNF-alpha, IL-1beta and IFN-gamma on the activation of protein kinase B (PKB), p70(S6k), mitogen-activated protein kinase (MAPK) and p90( rsk ), and on IGF-I-stimulated glucose uptake and protein synthesis in mouse C2C12 myotubes. 100 nmol/l IGF-I stimulated glucose uptake in C2C12 myotubes by 198.1% and 10 ng/ml TNF-alpha abolished this effect. Glucose uptake in cells differentiated in the presence of 10 ng/ml IFN-gamma increased by 167.2% but did not undergo significant further modification upon the addition of IGF-I. IGF-I increased the rate of protein synthesis by 249.8%. Neither TNF-alpha nor IFN-gamma influenced basal protein synthesis, but both cytokines prevented the IGF-I effect. 10 ng/ml IL-1beta did not modify either the basal or IGF-I-dependent glucose uptake and protein synthesis. With the exception of TNF-alpha causing an 18% decrease in the level of PKB protein, the cellular levels of PKB, p70(S6k), p42(MAPK), p44(MAPK) and p90( rsk ) were not affected by the cytokines. IGF-I caused the phosphorylation of PKB (an approximate 8-fold increase above the basal value after 40 min of IGF-I treatment), p42(MAPK) (a 2.81-fold increase after 50 min), and the activation of p70(S6k) and p90( rsk ), manifesting as gel mobility retardation. In cells differentiated in the presence of TNF-alpha or IFN-gamma, this IGF-I-mediated PKB and p70(S6k) phosphorylation was significantly diminished, and the increase in p42(MAPK) and p90( rsk ) phosphorylation was prevented. The basal p42(MAPK) phosphorylation in C2C12 cells treated with IFN-gamma was high and comparable with the activation of this kinase by IGF-I. Pretreatment of myogenic cells with IL-1beta did not modify the IGF-I-stimulated phosphorylation of PKB, p70(S6k), p42(MAPK) and p90( rsk ).

IN CONCLUSION: i) TNF-alpha and IFN-gamma, but not IL-1beta, if present in the extracellular environment during C2C12 myoblast differentiation, prevent the stimulatory action of IGF-I on protein synthesis. ii) TNF-alpha- and IFN-gamma-induced IGF-I resistance of protein synthesis could be associated with the decreased phosphorylation of PKB and p70(S6k). iii) The activation of glucose uptake in C2C12 myogenic cells treated with IFN-gamma is PKB independent. iv) The similar effects of TNF-alpha and IFN-gamma on the signalling and action of IGF-I on protein synthesis in myogenic cells could suggest the involvement of both of these cytokines in protein loss in skeletal muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app