Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery.

Biomaterials 2009 October
Gold (Au) nanoparticles (NPs) stabilized with a monolayer of folate-conjugated poly(L-aspartate-doxorubicin)-b-poly(ethylene glycol) copolymer (Au-P(LA-DOX)-b-PEG-OH/FA) was synthesized as a tumor-targeted drug delivery carrier. The Au-P(LA-DOX)-b-PEG-OH/FA NPs consist of an Au core, a hydrophobic poly(l-aspartate-doxorubicin) (P(LA-DOX)) inner shell, and a hydrophilic poly(ethylene glycol) and folate-conjugated poly(ethylene glycol) outer shell (PEG-OH/FA). The anticancer drug, doxorubicin (DOX), was covalently conjugated onto the hydrophobic inner shell by acid-cleavable hydrazone linkage. The DOX loading level was determined to be 17 wt%. The Au-P(LA-DOX)-b-PEG-OH/FA NPs formed stable unimolecular micelles in aqueous solution. The size of the Au-P(LA-DOX)-b-PEG-OH/FA micelles were determined as 24-52 and 10-25 nm by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The conjugated DOX was released from the Au-P(LA-DOX)-b-PEG-OH/FA micelles much more rapidly at pH 5.3 and 6.6 than at pH 7.4, which is a desirable characteristic for tumor-targeted drug delivery. Cellular uptake of the Au-P(LA-DOX)-b-PEG-OH/FA micelles facilitated by the folate-receptor-mediated endocytosis process was higher than that of the micelles without folate. This was consistent with the higher cytotoxicity observed with the Au-P(LA-DOX)-b-PEG-OH/FA micelles against the 4T1 mouse mammary carcinoma cell line. These results suggest that Au-P(LA-DOX)-b-PEG-OH/FA NPs could be used as a carrier with pH-triggered drug releasing properties for tumor-targeted drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app