JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

iPS cells produce viable mice through tetraploid complementation.

Nature 2009 September 4
Since the initial description of induced pluripotent stem (iPS) cells created by forced expression of four transcription factors in mouse fibroblasts, the technique has been used to generate embryonic stem (ES)-cell-like pluripotent cells from a variety of cell types in other species, including primates and rat. It has become a popular means to reprogram somatic genomes into an embryonic-like pluripotent state, and a preferred alternative to somatic-cell nuclear transfer and somatic-cell fusion with ES cells. However, iPS cell reprogramming remains slow and inefficient. Notably, no live animals have been produced by the most stringent tetraploid complementation assay, indicative of a failure to create fully pluripotent cells. Here we report the generation of several iPS cell lines that are capable of generating viable, fertile live-born progeny by tetraploid complementation. These iPS cells maintain a pluripotent potential that is very close to ES cells generated from in vivo or nuclear transfer embryos. We demonstrate the practicality of using iPS cells as useful tools for the characterization of cellular reprogramming and developmental potency, and confirm that iPS cells can attain true pluripotency that is similar to that of ES cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app