JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

HIF-1 alpha-deficient mice have increased brain injury after neonatal hypoxia-ischemia.

Evidence suggests that the activation of the transcription factor hypoxia-inducible factor 1 alpha (HIF-1 alpha) may promote cell survival in hypoxic or ischemic brain. To help understand the role of HIF-1 alpha in neonatal hypoxic-ischemic brain injury, mice with conditional neuron-specific inactivation of HIF-1 alpha underwent hypoxia-ischemia (HI). Mice heterozygous for Cre recombinase under the control of the calcium/calmodulin-dependent kinase II promoter were bred with homozygous 'floxed' HIF-1 alpha transgenic mice. The resulting litters produced mice with a forebrain predominant neuronal deletion of HIF-1 alpha (HIF-1 alpha(Delta)/(Delta)), as well as littermates without the deletion. In order to verify reduction of HIF-1 alpha at postnatal day 7, HIF-1 alpha(Delta)/(Delta) and wild-type mice were exposed to a hypoxic stimulus (8% oxygen) or room air for 1 h, followed by immediate collection of brain cortices for determination of HIF-1 alpha expression. Results of Western blotting of mouse cortices exposed to hypoxia stimulus or room air confirmed that HIF-1 alpha(Delta)/(Delta) cortex expressed a minimal amount of HIF-1 alpha protein compared to wild-type cortex with the same hypoxic stimulus. Subsequently, pups underwent the Vannucci procedure of HI at postnatal day 7: unilateral ligation of the right common carotid artery followed by 30 min of hypoxia (8% oxygen). Immunofluorescent staining of brains 24 h after HI confirmed a relative lack of HIF-1 alpha in the HIF-1 alpha(Delta)/(Delta) cortex compared to the wild type, and that HIF-1 alpha in the wild type is located in neurons. HIF-1 alpha expression was determined in mouse cortex 24 h after HI. Histological analysis for the degree of injury was performed 5 days after HI. HIF-1 alpha protein expression 24 h after HI showed a large increase of HIF-1 alpha in the hypoxic-ischemic cortex of the wild-type compared to the hypoxic only cortex. Histological analysis revealed that HI injury was increased in the neuronally deficient HIF-1 alpha(Delta)/(Delta) mouse brain (p < 0.05) and was more severe in the cortex. Genetic reduction of neuronal HIF-1 alpha results in a worsening of injury after neonatal HI, with a region-specific role for HIF-1 alpha in the setting of neonatal brain injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app