Add like
Add dislike
Add to saved papers

Inhibition of insulin-like growth factor 1 receptor by CP-751,871 radiosensitizes non-small cell lung cancer cells.

PURPOSE: Therapeutic strategies that target the insulin-like growth factor I receptor (IGF-1R) hold promise for a wide variety of cancers. We have now investigated the effect of CP-751,871, a fully human monoclonal antibody specific for IGF-IR, on the sensitivity of human non-small cell lung cancer (NSCLC) cell lines to radiation.

EXPERIMENTAL DESIGN: The radiosensitizing effect of CP-751,871 was evaluated on the basis of cell death, clonogenic survival, and progression of tumor xenografts. Radiation-induced damage was evaluated by immunofluorescence analysis of the histone gamma-H2AX and Rad51.

RESULTS: A clonogenic survival assay revealed that CP-751,871 increased the sensitivity of NSCLC cells to radiation in vitro. CP-751,871 inhibited radiation-induced IGF-IR signaling, and potentiated the radiation-induced increases both in the number of apoptotic cells and in the activity of caspase-3. Immunofluorescence analysis of the histone gamma-H2AX and Rad51 also showed that CP-751,871 inhibited the repair of radiation-induced DNA double-strand breaks. Finally, combination therapy with CP-751,871 and radiation delayed the growth of NSCLC tumor xenografts in nude mice to a greater extent than did either treatment modality alone.

CONCLUSIONS: These results show that CP-751,871 sensitizes NSCLC cells to radiation both in vitro and in vivo, and that this effect of CP-751,871 is likely attributable to the inhibition of DNA repair and enhancement of apoptosis that result from attenuation of IGF-IR signaling. Combined treatment with CP-751,871 and radiation thus warrants further investigation in clinical trials as a potential anticancer strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app