Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantitative variation and biosynthesis of hindgut volatiles associated with the red turpentine beetle, Dendroctonus valens LeConte, at different attack phases.

The red turpentine beetle (RTB), Dendroctonus valens LeConte, is a destructive invasive forest pest in China. For such tree-killing species, how to initiate a volatile-mediated mass attack is of great importance during the course of establishment. To understand the hindgut volatile production mechanism underlying mass attack initiated by RTB, coupled gas chromatography-mass spectrometry and 13C-labelled precursors were applied to explore the quantitative variation and biosynthesis of volatiles associated with RTB at different attack phases. Five previously described volatiles, trans-verbenol, myrtenol, cis-verbenol, myrtenal and verbenone, were identified and quantified from extracts of female and male hindguts, with the first two compounds as the major components and the latter three as minor constituents. In newly emerged females and males, only minute amounts of these compounds were detected. The quantity of volatiles from female adults significantly increased after they fed on bolts. Male adults also yielded larger quantities of volatiles after they joined females in galleries, which suggested that RTB males could accelerate the mass colonization on host trees. We also confirmed that RTB produced the five volatiles through oxidizing the major host monoterpene, alpha-pinene, but not synthesized de novo since products were labeled without 13C. The implication of this study in understanding the successful invasion of RTB is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app