JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of the chondrocyte actin cytoskeleton in living three-dimensional culture: response to anabolic and catabolic stimuli.

The actin cytoskeleton is a dynamic network required for intracellular transport, signal transduction, movement, attachment to the extracellular matrix, cellular stiffness and cell shape. Cell shape and the actin cytoskeletal configuration are linked to chondrocyte phenotype with regard to gene expression and matrix synthesis. Historically, the chondrocyte actin cytoskeleton has been studied after formaldehyde fixation--precluding real-time measurements of actin dynamics, or in monolayer cultured cells. Here we characterize the actin cytoskeleton of living low-passage human chondrocytes grown in three-dimensional culture using a stably expressed actin-GFP construct. GFP-actin expression does not substantially alter the production of endogenous actin at the protein level. GFP-actin incorporates into all actin structures stained by fluorescent phalloidin, and does not affect the actin cytoskeleton as seen by fluorescence microscopy. GFP-actin expression does not significantly change the chondrocyte cytosolic stiffness. GFP-actin does not alter the gene expression response to cytokines and growth factors such as IL-1beta and TGF-beta. Finally, GFP-actin does not alter production of extracellular matrix as measured by radiosulfate incorporation. Having established that GFP-actin does not measurably affect the chondrocyte phenotype, we tested the hypothesis that IL-1beta and TGF-beta differentially alter the actin cytoskeleton using time-lapse microscopy. TGF-beta increases actin extensions, and lamellar ruffling indicative of Rac/CDC42 activation, while IL-1beta causes cellular contraction indicative of RhoA activation. The ability to visualize GFP-actin in living chondrocytes in 3D culture without disrupting the organization or function of the cytoskeleton is an advance in chondrocyte cell biology and provides a powerful tool for future studies in actin-dependent chondrocyte differentiation and mechanotransduction pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app