Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Elevated CO2 and aboveground-belowground herbivory by the clover root weevil.

Oecologia 2010 January
Predicted increases in atmospheric carbon dioxide (CO(2)) concentrations are expected to increase primary productivity in many terrestrial ecosystems, which could lead to plants becoming N limited. Studies suggest that legumes may partially overcome this by increasing biological nitrogen fixation. However, these studies have not yet considered how these changes may be affected by the altered dynamics of insect herbivores feeding on the plant. This study investigated how elevated CO(2) (700 microl l(-1)) affected the clover root weevil (Sitona lepidus), a significant pest of white clover (Trifolium repens). Adults feed on leaves aboveground where they lay eggs; soil-dwelling larvae initially feed on root nodules that house N(2)-fixing bacteria. Foliar C:N ratios rose by 9% at elevated CO(2), but the biggest responses were observed belowground, with increases in root mass (85% greater) and nodule abundance (220% more abundant). Root C:N ratios increased significantly from 10.95 to 11.60 under elevated CO(2), which increased even further to 13.13 when nodules were attacked by larval S. lepidus. Adult S. lepidus consumed significantly more leaf tissue at elevated CO(2) (0.47 cm(2) day(-1)) compared with ambient CO(2) (0.35 cm(2) day(-1)), suggesting compensatory feeding, but laid 23% fewer eggs at elevated CO(2). Even though fewer eggs were laid at elevated CO(2), 38% more larvae were recovered suggesting that larval survival was much better under elevated CO(2). Increased larval abundance and performance at elevated CO(2) were positively correlated with the number of nodules available. In conclusion, reduced foliar quality at elevated CO(2) was generally disadvantageous for adult S. lepidus living aboveground, but extremely beneficial for S. lepidus larvae living belowground, due to the enhanced nodulation. Climate change may, therefore, enhance biological nitrogen fixation by T. repens, but potential benefits (e.g. provision of N without chemical fertilizers) may be undermined by larger populations of S. lepidus larvae belowground.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app