JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Co-inhibition of cyclooxygenase-2 and dihydropyrimidine dehydrogenase by non-steroidal anti-inflammatory drugs in tumor cells and xenografts.

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) may be able to enhance the antitumor effect of cancer drugs. Cyclooxygenase-2 (COX-2) is the best characterized target of NSAIDs. It was demonstrated that elevated dihydropyrimidine dehydrogenase (DPD) and COX-2 activities influence the response to 5-fluorouracil (5-FU). We previously showed that NSAIDs increased 5-FU sensitivity only in high COX-2-expressing cancer cells.

MATERIALS AND METHODS: The effect of indomethacin and NS-398 on DPD activity and mRNA expression in a high COX-2-expressing (determined by Western blotting, immunoflourescence and immunohistochemistry) cell line (24-, 48-hour, 10-day treatment) and xenograft (3-week treatment) was investigated.

RESULTS: The coexistence of high COX-2 and DPD activity or low activities of both enzymes were detected. After treatment with NSAIDs, a simultaneous and significant decrease of both activities was also demonstrated.

CONCLUSION: NSAIDs could be promising modulators of fluorouracil-based chemotherapy, especially in high COX-2-expressing tumours.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app