JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model.
Wound Repair and Regeneration 2009 May
Bacterial biofilms have gained increasing visibility in recent years as a ubiquitous form of survival for microorganisms in myriad environments. A number of in vivo models exist for the study of biofilms in the setting of medically relevant implanted foreign bodies. Growing evidence has demonstrated the presence of bacterial biofilms in the setting of a number of chronic wound states including pressure sores, diabetic foot ulcers, and venous stasis ulcers. Here we present a novel murine cutaneous wound system that directly demonstrates delayed reepithelialization caused by the presence of a bacterial biofilm. We established biofilms using either Staphylococcus aureus or Staphylococcus epidermidis in splinted cutaneous punch wounds created on the backs of normal C57Bl6/J mice. Wound reepithelialization was significantly delayed by bacterial biofilms. This effect was specifically dependent on the ability of the bacteria to form biofilms as demonstrated by exogenous administration of biofilm inhibiting peptides and the use of mutant Staphylococcus spp. deficient in biofilm formation. This represents the first direct evidence for the effect of bacterial biofilms on cutaneous wound healing.
Full text links
Trending Papers
The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.Journal of Intensive Care 2023 May 24
Abdominal wall closure.British Journal of Surgery 2023 September 16
Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement.Nature Reviews. Endocrinology 2023 September 6
MRI abnormalities in Creutzfeldt-Jakob disease and other rapidly progressive dementia.Journal of Neurology 2023 September 13
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app