JOURNAL ARTICLE
REVIEW
beta(2)-microglobulin: from physiology to amyloidosis.
beta(2)-microglobulin (beta(2)m) is capable of forming amyloid in osteoarticular structures in kidney failure patients that undergo chronic hemodialysis treatment. Although sophisticated analytical methods have yielded comprehensive data about the conformation of the native protein both as a monomer and as the light chain of the type I major histocompatibility complex, the cause and mechanisms leading to the transformation of beta(2)m into amyloid deposits in patients with dialysis-related amyloidosis are unsettled. The impact on conformational stability of various truncations, cleavages, amino acid substitutions, and divalent cations, especially Cu(2+), however, are highly relevant for understanding beta(2)m unfolding pathways leading to amyloid formation. This review describes the current knowledge about such conformationally destabilizing and amyloidogenic factors and links these to the structure and function of beta(2)m in normal physiology and pathology. Tables listing modifications of beta(2)m found in amyloid from patients and a systematic overview of laboratory conditions conducive to beta(2)m-fibrillogenesis are also included.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app