COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Quantifying transcriptional regulatory networks by integrating sequence features and microarray data.

Genome-wide transcriptional regulatory networks (TRNs) specify the interactions between transcription factors (TFs) and their target genes. Many methods have been proposed to reconstruct regulatory networks from gene expression datasets and/or genome sequences, but most of them can only infer qualitative regulation relationships. Thus, developing a quantitative model that can estimate the kinetic parameters of transcriptional regulatory functions is an urgent and important task. In this paper I propose REMBE, a regulatory model based on binding energy, to quantify transcriptional regulatory networks. My model combines multiple kinetic quantities, including binding strength, TF-DNA's binding energy, transcription productivity with respect to each binding state, and hidden TFs' concentration, into a general learning model. Experimental results show that my model can effectively learn these kinetic parameters and TFs' concentration from genome sequences and gene expression data. Moreover, these learned parameters and TFs' concentration provide more informative biological senses than merely qualitative regulatory relationships can do.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app