Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

HSD11B1 polymorphisms predicted bone mineral density and fracture risk in postmenopausal women without a clinically apparent hypercortisolemia.

Bone 2009 December
INTRODUCTION: Endogenous glucocorticoid (GC) may participate in bone physiology, even in subjects with no glucocorticoid excess. 11beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) is a primary regulator catalyzing the reduction of inactive cortisone to active cortisol. To elucidate genetic relevance of HSD11B1 variants to vertebral fracture and osteoporosis, we investigated the potential involvement of six HSD11B1 SNPs in postmenopausal women.

METHODS: All exons, their boundaries and the promoter region (approximately 1.5 kb) were directly sequenced in 24 individuals. Six polymorphisms were selected and genotyped in all study participants (n=1329). BMD was measured using dual-energy X-ray absorptiometry.

RESULTS: HSD11B1 +16374C>T and +27447G>C were associated with reduced vertebral fracture risk (p=0.016 and 0.032, respectively). Two of these (LD block2) in intron 5 (rs1000283 and rs932335) were significantly associated with bone mineral density (BMD) at the femoral neck (p=0.00005 and 0.0002, respectively). Specifically, HSD11B1 +16374C>T and +27447G>C polymorphisms were associated with higher BMD values of the femoral neck in multiple comparison (p=0.0002 and 0.0004, respectively) and Bonferroni corrected significance level (97% power). Consistent with these results, HSD11B1-ht21 and -ht22 comprising both SNPs also showed the evidence of association with BMD values of the femoral neck (p(domiant)=0.0002 and p(recessive)=0.00005, respectively).

CONCLUSION: Our results provide preliminary evidence supporting an association of HSD11B1 with osteoporosis in postmenopausal women. Also, these findings demonstrate that +16374C>T polymorphism may be useful genetic markers for bone metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app