JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cytokine and hormone responses to resistance training.

This study examined the effects of heavy resistance training on physiological acute exercise-induced fatigue (5 x 10 RM leg press) changes after two loading protocols with the same relative intensity (%) (5 x 10 RM(Rel)) and the same absolute load (kg) (5 x 10 RM(Abs)) as in pretraining in men (n = 12). Exercise-induced neuromuscular (maximal strength and muscle power output), acute cytokine and hormonal adaptations (i.e., total and free testosterone, cortisol, growth hormone (GH), insulin-like growth factor-1 (IGF-1), IGF binding protein-3 (IGFBP-3), interleukin-1 receptor antagonist (IL-1ra), IL-1beta, IL-6, and IL-10 and metabolic responses (i.e., blood lactate) were measured before and after exercise. The resistance training induced similar acute responses in serum cortisol concentration but increased responses in anabolic hormones of FT and GH, as well as inflammation-responsive cytokine IL-6 and the anti-inflammatory cytokine IL-10, when the same relative load was used. This response was balanced by a higher release of pro-inflammatory cytokines IL-1beta and cytokine inhibitors (IL-1ra) when both the same relative and absolute load was used after training. This enhanced hormonal and cytokine response to strength exercise at a given relative exercise intensity after strength training occurred with greater accumulated fatigue and metabolic demand (i.e., blood lactate accumulation). The magnitude of metabolic demand or the fatigue experienced during the resistance exercise session influences the hormonal and cytokine response patterns. Similar relative intensities may elicit not only higher exercise-induced fatigue but also an increased acute hormonal and cytokine response during the initial phase of a resistance training period.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app