Supported lipid bilayer templated J-aggregate growth: role of stabilizing cation-pi interactions and headgroup packing

Gary C H Mo, Christopher M Yip
Langmuir: the ACS Journal of Surfaces and Colloids 2009 September 15, 25 (18): 10719-29
Controlling the self-assembly of molecules into specific structural motifs has important implications for the design of materials with specific optical properties. We report here the results of a correlated confocal fluorescence-atomic force microscopy (AFM) study of pseudoisocyanine iodide (PIC) self-assembly on supported lipid bilayers. Through judicious selection of bilayer headgroup packing and chemistry, two types of PIC J-aggregates, distinguishable by their absorbance spectra, and both exhibiting strong resonant fluorescence and bathochromic shifts in absorbance relative to the monomer, were isolated. Remarkably, selective templating can be achieved using different zwitterionic headgroups, producing J-aggregates that display a larger bathochromic shift than their solution counterparts. Our correlated confocal-AFM studies coupled with FT-IR spectroscopy suggested that zwitterionic phospholipids mediate J-aggregate formation through specific cation-pi interactions between PIC and the lipid headgroups with the PIC molecules oriented largely perpendicular to the bilayer normal. The existence of the two isoforms further suggests that bilayer headgroup packing plays a key role in controlling interchromophore organization and subsequent aggregate nucleation and growth.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"