Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Fluidic conduits for highly efficient purification of target species in EWOD-driven droplet microfluidics.

Lab on a Chip 2009 August 22
Due to the lack of continuous flows that would wash unwanted specifies and impurities off from a target location, droplet microfluidics commonly employs a long serial dilution process to purify target species. In this work, we achieve high-purity separation for the case of electrowetting-on-dielectric (EWOD) based droplet microfluidics by introducing a "fluidic conduit" between a sample droplet and a buffer droplet. The long and slender fluidic path minimizes the diffusion and fluidic mixing between the two droplets (thus eliminating non-specific transport) but provides a conduit between them for actively transported particles (thus allowing the specific transport). The conduit is purely fluidic, stabilized chemically (e.g. using surfactants) and controlled by EWOD. The effectiveness of the technique is demonstrated by eliminating approximately 97% non-magnetic beads in just one purification step, while maintaining high collection efficiency (>99%) of magnetic beads.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app