JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil.

The polycyclic aromatic hydrocarbon (PAH) contamination, bacterial community, and PAH-degrading bacteria were monitored in aged PAH-contaminated soil (Neuves-Maisons [NM] soil; with a mean of 1,915 mg of 16 PAHs.kg(-1) of soil dry weight) and in the same soil previously treated by thermal desorption (TD soil; with a mean of 106 mg of 16 PAHs.kg(-1) of soil dry weight). This study was conducted in situ for 2 years using experimental plots of the two soils. NM soil was colonized by spontaneous vegetation (NM-SV), planted with Medicago sativa (NM-Ms), or left as bare soil (NM-BS), and the TD soil was planted with Medicago sativa (TD-Ms). The bacterial community density, structure, and diversity were estimated by real-time PCR quantification of the 16S rRNA gene copy number, temporal thermal gradient gel electrophoresis fingerprinting, and band sequencing, respectively. The density of the bacterial community increased the first year during stabilization of the system and stayed constant in the NM soil, while it continued to increase in the TD soil during the second year. The bacterial community structure diverged among all the plot types after 2 years on site. In the NM-BS plots, the bacterial community was represented mainly by Betaproteobacteria and Gammaproteobacteria. The presence of vegetation (NM-SV and NM-Ms) in the NM soil favored the development of a wider range of bacterial phyla (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Verrucomicrobia, Actinobacteria, Firmicutes, and Chloroflexi) that, for the most part, were not closely related to known bacterial representatives. Moreover, under the influence of the same plant, the bacterial community that developed in the TD-Ms was represented by different bacterial species (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria) than that in the NM-Ms. During the 2 years of monitoring, the PAH concentration did not evolve significantly. The abundance of gram-negative (GN) and gram-positive (GP) PAH-degrading bacteria was estimated by real-time PCR quantification of specific functional genes encoding the alpha subunit of PAH-ring hydroxylating dioxygenase (PAH-RHD(alpha)). The percentage of the PAH-RHD(alpha) GN bacterial genes relative to 16S rRNA gene density decreased with time in all the plots. The GP PAH-RHD(alpha) bacterial gene proportion decreased in the NM-BS plots but stayed constant or increased under vegetation influence (NM-SV, NM-Ms, and TD-Ms).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app