JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In vitro activity of ceftazidime, ciprofloxacin, meropenem, minocycline, tobramycin and trimethoprim/sulfamethoxazole against planktonic and sessile Burkholderia cepacia complex bacteria.

OBJECTIVES: The goal of the present study was to obtain a comprehensive overview of the bacteriostatic and bactericidal effects of six commonly used antibiotics on planktonic as well as on sessile Burkholderia cepacia complex cells.

METHODS: The bacteriostatic and bactericidal activities of ceftazidime, ciprofloxacin, meropenem, minocycline, tobramycin and trimethoprim/sulfamethoxazole were determined against 38 B. cepacia complex strains. MICs and minimal biofilm inhibitory concentrations (MBICs) were determined using a traditional broth microdilution method and a novel resazurin-based viability staining, respectively. The bactericidal effects of the investigated antibiotics (using antibiotic concentrations corresponding to 10 x MIC; except for tobramycin, for which a final concentration of 4 x MIC was tested) on stationary phase planktonic cultures and on 24-h-old biofilms were evaluated using conventional plate count methods.

RESULTS: Our results confirm the innate resistance of B. cepacia complex organisms to six first-line antibiotics used to treat infected cystic fibrosis patients. All antibiotics showed similar bacteriostatic activities against exponentially growing B. cepacia complex planktonic cells and freshly adhered sessile cells (4 h). In addition, most of the antibiotics showed similar bactericidal effects on stationary phase planktonic cultures and on young and older biofilms.

CONCLUSIONS: Despite the general assumption that sessile cells show a decreased susceptibility to antibiotics, our data indicate similar bacteriostatic and bactericidal activity of six selected antibiotics against planktonic and sessile B. cepacia complex bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app