JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Improvement of impaired calcium and skeletal homeostasis in vitamin D receptor knockout mice by a high dose of calcitriol and maxacalcitol.

Bone 2009 November
Vitamin D plays a major role in mineral and skeletal homeostasis through interaction with the nuclear vitamin D receptor (VDR) of target cells. Recent reports have indicated that some cellular effects of vitamin D may occur via alternative signaling pathways, but concrete evidence for mineral homeostasis has not been shown in vivo. To investigate this issue, the actions of calcitriol (1,25D) and maxacalcitol (OCT), which were developed for treatment of uremia-induced secondary hyperparathyroidism, were analyzed in VDR knockout (VDR(-/-)) mice. The VDR(-/-) mice were fed a rescue diet immediately after weaning. 1,25D, OCT or a control solution was administered intraperitoneally to these mice three times a week for eight weeks. Biological markers and bone growth were measured and bone histomorphometric analysis of the calcein-labeled tibia was performed 24 h after the final administration. Significantly higher levels of serum Ca(2+) were observed in 1,25D- and OCT-treated mice, but the serum parathyroid hormone level was unchanged by both agents. Impaired bone growth, enlarged and distorted cartilaginous growth plates, morphological abnormalities of cancellous and cortical bones; a morbid osteoid increase, lack of calcein labeling, and thinning of cortical bone, were all significantly improved by 1,25D and OCT. The significance of these effects was confirmed by bone histomorphometrical analysis. Upregulation of the calbindin D(9k) mRNA expression level in the duodenum may explain these findings, since this protein is a major modulator of Ca transport in the small intestine. We conclude that 1,25D and OCT both at a high dose exert significant effects on Ca and skeletal homeostasis with the principal improvement of Ca status in VDR(-/-) mice, and some of these effects may occur through an alternative vitamin D signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app