Add like
Add dislike
Add to saved papers

Human peritoneal membrane reduces the formation of intra-abdominal adhesions in ventral hernia repair: experimental study in a chronic hernia rat model.

BACKGROUND: Adhesions leading to intestinal obstructions and fistulae are severe complications related to the intraperitoneal placement of synthetic meshes. This study evaluated the efficacy of human peritoneal membrane (HPM) in a chronic hernia repair rat model as an anti-adhesive solution for preventing the development of intra-abdominal adhesions.

MATERIALS AND METHODS: The mechanical properties of HPM and human fascia lata (HFL) were evaluated prior to in vivo implantation. Twenty rats underwent midline laparotomy, which led to the development of chronic hernias 28 d later. Then, animals underwent incisional hernia repair in an underlay fashion (n=5/mesh group) with compressed poly(tetra-fluoro-ethylene) (cPTFE), onto which HPM or HFL were affixed pre-repair, along with two additional controls. The extent and tenacity of intra-abdominal adhesions were determined through qualitative gross evaluations and quantitative tensiometry at 30 d post-repair. The host tissue response was evaluated histologically.

RESULTS: In hydrated state, the elastic properties of HPM were superior to HFL. Repairs with HPM had significantly less surface area covered by adhesions, with significantly lower tenacity compared with all other groups. Furthermore, intra-abdominal adhesions developed in the presence of HPM were associated with omentum only, and were distributed around the perimeter of the exposed cPTFE. HPM served as an active tissue remodeling template, replacing the traditional foreign body encapsulation with an anatomically and physiologically superior outcome.

CONCLUSIONS: HPM significantly reduces the extent and tenacity of intra-abdominal adhesion formation, and represents a bioprosthetic template that encourages structural and functional neo peritonealization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app