JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier.

Brain capillary endothelial cells form the blood-brain barrier (BBB), a highly selective permeability membrane between the blood and the brain. Besides tight junctions that prevent small hydrophilic compounds from passive diffusion into the brain tissue, the endothelial cells express different families of drug efflux transport proteins that limit the amount of substances penetrating the brain. Two prominent efflux transporters are the breast cancer resistance protein and P-glycoprotein (P-gp). During inflammatory reactions, which can be associated with an altered BBB, pro-inflammatory cytokines are present in the systemic circulation. We, therefore, investigated the effect of the pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) on the expression and activity of BCRP and P-gp in the human hCMEC/D3 cell line. BCRP mRNA levels were significantly reduced by IL-1beta, IL-6 and TNF-alpha. The strongest BCRP suppression at the protein level was observed after IL-1beta treatment. IL-1beta, IL-6 and TNF-alpha also significantly reduced the BCRP activity as assessed by mitoxantrone uptake experiments. P-gp mRNA levels were slightly reduced by IL-6, but significantly increased after TNF-alpha treatment. TNF-alpha also increased protein expression of P-gp but the uptake of the P-gp substrate rhodamine 123 was not affected by any of the cytokines. This in vitro study indicates that expression levels and activity of BCRP, and P-gp at the BBB may be altered by acute inflammation, possibly affecting the penetration of their substrates into the brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app