JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies.

Collagen is a protein material with intriguing mechanical properties - it is highly elastic, shows large fracture strength and plays a crucial role in making Nature's structural materials tough. Collagen based tissues consist of collagen fibrils, each of which is composed out of a staggered array of ultra-long tropocollagen molecules extending to several hundred nanometers. Albeit the macroscopic properties of collagen based tissues have been studied extensively, less is known about the nanomechanical properties of tropocollagen molecules and collagen fibrils, their elementary building blocks. In particular, the relationship between molecular properties and tissue properties remains a scarcely explored aspect of the science of collagen materials. Results of molecular multi-scale modeling of the nanomechanical properties of the large-strain deformation regime of collagen fibrils under varying cross-link densities are reported in this paper. The results confirm the significance of cross-links in collagen fibrils in improving its mechanical strength. Further, it is found that cross-links influence the nature of its large-deformation and fracture behavior. Cross-link deficient collagen fibrils show a highly dissipative deformation behavior with large yield regimes. Increasing cross-link densities lead to stronger fibrils that display an increasingly brittle deformation character. The simulation results are compared with recent nanomechanical experiments at the scale of tropocollagen molecules and collagen fibrils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app