Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles.

A combination of moderately selective host-guest binding with the impressive specificity of enzymatic transformations allows the real-time monitoring of enzymatic reactions in a homogeneous solution. The resulting enzyme assays ("supramolecular tandem assays") exploit the dynamic binding of a fluorescent dye with a macrocyclic host in competition with the binding of the substrate and product. Two examples of enzymatic reactions were investigated: the hydrolysis of arginine to ornithine catalyzed by arginase and the oxidation of cadaverine to 5-aminopentanal by diamine oxidase, in which the substrates have a higher affinity to the macrocycle than the products ("substrate-selective assays"). The depletion of the substrate allows the fluorescent dye to enter the macrocycle in the course of the enzymatic reaction, which leads to the desired fluorescence response. For arginase, p-sulfonatocalix[4]arene was used as the macrocycle, which displayed binding constants of 6400 M(-1) with arginine, 550 M(-1) with ornithine, and 60,000 M(-1) with the selected fluorescent dye (1-aminomethyl-2,3-diazabicyclo[2.2.2]oct-2-ene); the dye shows a weaker fluorescence in its complexed state, which leads to a switch-off fluorescence response in the course of the enzymatic reaction. For diamine oxidase, cucurbit[7]uril (CB7) was used as the macrocycle, which showed binding constants of 4.5 x 10(6) M(-1) with cadaverine, 1.1 x 10(5) M(-1) with 1-aminopentane (as a model for the thermally unstable 1-aminopentanal), and 2.9 x 10(5) M(-1) with the selected fluorescent dye (acridine orange, AO); AO shows a stronger fluorescence in its complexed state, which leads to a switch-on fluorescence response upon enzymatic oxidation. It is demonstrated that tandem assays can be successfully used to probe the inhibition of enzymes. Inhibition constants were estimated for the addition of known inhibitors, i.e., S-(2-boronoethyl)-L-cysteine and 2(S)-amino-6-boronohexanoic acid for arginase and potassium cyanide for diamine oxidase. Through the sequential coupling of a "product-selective" with a "substrate-selective" assay it was furthermore possible to monitor a multistep biochemical pathway, namely the decarboxylation of lysine to cadaverine by lysine decarboxylase followed by the oxidation of cadaverine by diamine oxidase. This "domino tandem assay" was performed in the same solution with a single reporter pair (CB7/AO).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app