Add like
Add dislike
Add to saved papers

Archaeal communities associated with shallow to deep subseafloor sediments of the New Caledonia Basin.

The distribution of the archaeal communities in deep subseafloor sediments [0-36 m below the seafloor (mbsf)] from the New Caledonia and Fairway Basins was investigated using DNA- and RNA-derived 16S rRNA clone libraries, functional genes and denaturing gradient gel electrophoresis (DGGE). A new method, Co-Migration DGGE (CM-DGGE), was developed to access selectively the active archaeal diversity. Prokaryotic cell abundances at the open-ocean sites were on average approximately 3.5 times lower than at a site under terrestrial influence. The sediment surface archaeal community (0-1.5 mbsf) was characterized by active Marine Group 1 (MG-1) Archaea that co-occurred with ammonia monooxygenase gene (amoA) sequences affiliated to a group of uncultured sedimentary Crenarchaeota. However, the anoxic subsurface methane-poor sediments (below 1.5 mbsf) were dominated by less active archaeal communities, such as the Thermoplasmatales, Marine Benthic Group D and other lineages probably involved in the methane cycle (Methanosarcinales, ANME-2 and DSAG/MBG-B). Moreover, the archaeal diversity of some sediment layers was restricted to only one lineage (Uncultured Euryarchaeota, DHVE6, MBG-B, MG-1 and SAGMEG). Sequences forming two clusters within the Thermococcales order were also present in these cold subseafloor sediments, suggesting that these uncultured putative thermophilic archaeal communities might have originated from a different environment. This study shows a transition between surface and subsurface sediment archaeal communities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app