JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.

Biomacromolecules 2009 August 11
The purpose of this study was to evaluate the growth patterns and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) when seeded onto new biodegradable chitosan/polyester scaffolds. Scaffolds were obtained by melt blending chitosan with poly(butylene succinate) in a proportion of 50% (wt) each and further used to produce a fiber mesh scaffold. hBMSCs were seeded on those structures and cultured for 3 weeks under osteogenic conditions. Cells were able to reduce MTS and demonstrated increasing metabolic rates over time. SEM observations showed cell colonization at the surface as well as within the scaffolds. The presence of mineralized extracellular matrix (ECM) was successfully demonstrated by peaks corresponding to calcium and phosphorus elements detected in the EDS analysis. A further confirmation was obtained when carbonate and phosphate group peaks were identified in Fourier Transformed Infrared (FTIR) spectra. Moreover, by reverse transcriptase (RT)-PCR analysis, it was observed the expression of osteogenic gene markers, namely, Runt related transcription factor 2 (Runx2), type 1 collagen, bone sialoprotein (BSP), and osteocalcin. Chitosan-PBS (Ch-PBS) biodegradable scaffolds support the proliferation and osteogenic differentiation of hBMSCs cultured at their surface in vitro, enabling future in vivo testing for the development of bone tissue engineering therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app