JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Low extracellular Ca2+: a mediator of endothelial inflammation.

BACKGROUND: Recent studies have suggested that vitamin D and an imbalance in calcium homeostasis may have an impact on the cardiovascular system. The aim of this study was to assess the impact of different concentrations of extracellular Ca(2+) on human umbilical vein cord endothelial cells (HUVEC) by measuring its effect on parameters involved in the pathogenesis of vascular inflammatory responses.

METHODS: HUVEC were grown in the 3.5, 4.5 or 5.8 mg/dL concentration of extracellular Ca(2+) for 2-3 weeks. Expression of adhesion molecules was analysed by flow cytometry. Endothelial nitric oxide synthase (eNOS), receptor of advanced glycation end-product (RAGE) and interleukin-6 (IL-6) mRNA expressions were determined by real-time PCR. eNOS, inhibitor kappa Balpha (IkappaBalpha) and phosphorylated IkappaBalpha protein levels by Western blot, eNOS activity by conversion of [(14)C]-arginine to [(14)C]-citrulline, IL-6 and osteoprotegerin (OPG) secretion by ELISA and DNA-binding activity of nuclear factor kappa B (NFkappaB)-p65 were assayed colorimetrically in nuclear extracts.

RESULTS: In the presence of low Ca(2+) (3.5 mg/dL), protein expressions and activity of eNOS were diminished, while the protein expressions of intercellular adhesion molecule-1 (ICAM-1), as well as the mRNA expressions of RAGE and IL-6, were elevated. The protein secretions of IL-6 and OPG were also stimulated in low Ca(2+) concentration. At this concentration, the DNA-binding activity of NFkappaB was enhanced, probably due to the decreased level of IkappaBalpha.

CONCLUSIONS: These results suggest that lower extracellular ionized Ca(2+) may play a relevant role in modifying endothelial cells functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app