Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment.

The catalytic advanced oxidation process (CAOP) of O(3)/MgO/H(2)O(2) was integrated with a sequencing batch reactor (SBR) system to completely treat concentrated formaldehyde wastewater, demonstrating that this combination is an effective method for treating such wastewaters. The influence of several operational variables--including pH, MgO powder dosage, and the concentrations of H(2)O(2) and O(3)--was investigated for the O(3)/MgO/H(2)O(2) degradation of a 7000 mg/L formaldehyde wastewater. The optimum conditions were found to be a pH of 8, 5 g/L dose of MgO powder, 0.09 mole/L concentration of H(2)O(2), and 0.153 g/L min dose of O(3). The formaldehyde and COD concentrations were reduced 79% and 65.6%, respectively, in the CAOP for 120 min of reaction time under the optimum condition stated above. The remaining concentrations of formaldehyde and COD were 1500 mg/L and 3200 mg/L, respectively, in the effluent. The degradation of formaldehyde in CAOP was determined to be a first-order reaction with a constant of 0.015/min, and radical oxidation was the predominant degradation mechanism. This effluent was post-treated in SBR system for a total cycle time of 24h. The SBR completely removed the formaldehyde and removed 98% of the COD, reducing the COD concentration to lower than 60 mg/L. Therefore, the integrated O(3)/MgO/H(2)O(2) and SBR process is demonstrated as a promising technology for the complete treatment of wastewater with high concentrations of toxic and inhibitory compounds such as formaldehyde.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app