Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Thrombin induces cyclooxygenase-2 expression via the ERK and NF-kappaB pathways in human lung fibroblasts.

There is growing evidence that increased expression of cyclooxygenase-2 (COX-2) in the lungs of patients is a key event in the pathogenesis of lung diseases. In this study, we investigated the involvement of the extracellular signal-regulated kinase (ERK), IkappaB kinase alpha/beta (IKKalpha/beta), and nuclear factor-kappaB (NF-kappaB) signaling pathways in thrombin-induced COX-2 expression in human lung fibroblasts (WI-38). Treatment of WI-38 cells with thrombin caused increased COX-2 expression in a concentration- and time-dependent manner. Treatment of WI-38 cells with PD 98059 (2-[2-amino-3-methoxyphenyl]-4H-1-benzopyran-4-one, a MEK inhibitor) inhibited thrombin-induced COX-2 expression and COX-2-luciferase activity. Stimulation of cells with thrombin caused an increase in ERK phosphorylation in a time-dependent manner. In addition, treatment of WI-38 cells with Bay 117082, an IkappaB phosphorylation inhibitor, and pyrrolidine dithiocarbamate (PDTC), an NF-kappaB inhibitor, inhibited thrombin-induced COX-2 expression. The thrombin-induced increase in COX-2-luciferase activity was also blocked by the dominant negative IkappaBalpha mutant (IkappaBalphaM). Treatment of WI-38 cells with thrombin induced IKKalpha/beta and IkappaBalpha phosphorylation, IkappaBalpha degradation, and kappaB-luciferase activity. The thrombin-mediated increases in IKKalpha/beta phosphorylation and kappaB-luciferase activity were inhibited by PD 98059. Taken together, these results suggest that the ERK-dependent IKKalpha/beta/NF-kappaB signaling pathway plays an important role in thrombin-induced COX-2 expression in human lung fibroblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app