Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Short-term exercise training improves aerobic capacity with no change in arterial function in obesity.

The aim of the study is to determine the effects of short-term high-intensity exercise on arterial function and glucose tolerance in obese individuals with and without the metabolic syndrome (MetSyn). Obese men and women (BMI > 30 kg/m(2); 39-60 years) with and without MetSyn (MetSyn, n = 13; Non-MetSyn, n = 13) participated in exercise training consisting of ten consecutive days of treadmill walking for 1 h/day at 70-75% of peak aerobic capacity. Changes in aerobic capacity, flow-mediated dilation (FMD), and arterial stiffness using central and peripheral pulse wave velocity (PWV) measurements were assessed pre- and post-training. These measurements were obtained fasting and 1-h post-test meal while the subjects were hyperglycemic. Aerobic capacity improved for both groups [Non-MetSyn 24.0 +/- 1.6 vs. 25.1 +/- 1.5 mL/(kg min); MetSyn 25.2 +/- 1.8 vs. 26.2 +/- 1.7 mL/(kg min), P < 0.05]. There was no change in body weight. FMD decreased by ~20% (P < 0.05) for both groups during acute hyperglycemia (MetSyn, n = 11; Non-MetSyn, n = 10), while hyperglycemia increased central PWV and not peripheral PWV. Exercise training did not change FMD in the fasted or challenged state. Central and peripheral PWV were not altered with training for either group (MetSyn, n = 13; Non-MetSyn, n = 13). A 10-day high-intensity exercise program in obese individuals improved aerobic capacity and glucose tolerance but no change in arterial function was observed. Acute hyperglycemia had a deleterious effect on arterial function, suggesting that persons with impaired glucose homeostasis may experience more opportunities for attenuated arterial function on a daily basis which could contribute to increased cardiovascular risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app