JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

The effect of kappa-opioid receptor agonists on tetrodotoxin-resistant sodium channels in primary sensory neurons.

BACKGROUND: A non-opioid receptor-mediated inhibition of sodium channels in dorsal root ganglia (DRGs) by kappa-opioid receptor agonists (kappa-ORAs) has been reported to contribute to the antinociceptive actions in animals and humans. In this study, we examined structurally diverse kappa-ORAs for their abilities to inhibit tetrodotoxin-resistant (TTX-r) sodium channels in adult rat DRGs.

METHODS: Whole-cell recordings of TTX-r sodium currents were performed on cultured adult rat DRGs. Structurally diverse kappa-ORAs were studied for their abilities to inhibit TTX-r sodium channels.

RESULTS: The racemic kappa-ORA, (+/-)U50,488, inhibited TTX-r sodium currents in a voltage-dependent manner, yielding IC(50) values of 49 and 8 muM, at prepulse potentials of -100 and -40 mV, respectively. Furthermore, we found that both the kappa-ORA U50,488 active enantiomer 1S,2S U50,488 and the inactive enantiomer 1R,2R U50,488 were equally potent inhibitors of TTX-r sodium currents. Structurally related kappa-ORAs, such as BRL 52537 and ICI 199,441 also inhibited TTX-r sodium currents. However, sodium channel inhibition and kappa-opioid receptor agonism have a distinct structure-activity relationship because another kappa-ORA (ICI 204,488) was inactive versus TTX-r sodium channels. We further investigated the sodium channel block of this class of compounds by studying (+/-)U50,488. (+/-)U50,488 was found to preferentially interact with the slow inactivated state of TTX-r sodium channels and to retard recovery from inactivation.

CONCLUSION: Our results suggest that TTX-r sodium channels can be inhibited by many kappa-ORAs via an opioid receptor-independent mechanism. Although the potency for sodium channel inhibition is typically much less than apparent affinity for opioid receptors, sodium channel block may still contribute to the antinociceptive effects of this class of compounds.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app