JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Removal of fluoride from aqueous environment by modified Amberlite resin.

Fluoride in drinking water above permissible level is responsible for human being affected by skeletal fluorosis. In this study, Amberlite XAD-4 has been modified by introducing amino group onto the aromatic ring for its application in fluoride remediation. Characterization of the modified resin was made by, FT-IR and elemental analysis (CHNS) techniques. The pH 9 was optimum value for quantitative sorption of fluoride in both batch and column experiments. The desorption of fluoride was achieved by using 10% HCl. The batch and column sorption studies of fluoride with modified resin were carried out to evaluate sorption isotherms too. Thus equation isotherms such as Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) were successfully used to model the experimental data. The sorption capacity of modified Amberlite XAD-4 resin was found as 5.04 x 10(-3) mol g(-1). From the D-R isotherm parameters, it has been evaluated that the uptake of fluoride by modified resin occurs through ion exchange adsorption mechanism. The study will contribute toward the removal of fluoride from the aqueous environment as well as in the field of analytical and environmental chemistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app