Add like
Add dislike
Add to saved papers

Adsorption of lead(II) from water by carbon nanotubes: equilibrium, kinetics, and thermodynamics.

Adsorption of lead(II) from water on carbon nanotubes (CNTs) was investigated using a series of batch adsorption experiments. The adsorption rate was studied experimentally at various temperatures, contact times, and initial pH and lead(II) concentrations. It was observed that a considerable amount of lead(II) was adsorbed during the first 5 minutes of contact time. The pH of the solution strongly influenced the amount of adsorption, and the best results were obtained when pH value was approximately 6. For the adsorption isotherm, the experimental data were analyzed by three two-parameter isotherms (Langmuir, Freundlich, and Temkin) and four three-parameter isotherms (Redhich-Peterson, Sips, Toth, and Khan). The three kinetic models used to test the experimental data were Lagergren first-order, second-order, and the Elovich equation. The results obtained from the study of the thermodynamic parameters showed that the adsorption of lead(II) onto CNTs was a spontaneous and endothermic process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app