JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits.

A recombinant inbred line (RIL) population was evaluated in seven field experiments representing four environments: water stress at flowering (WS) and well-watered (WW) conditions in Mexico and Zimbabwe. The QTLs were identified for each trait in each individual experiment (single-experiment analysis) as well as per environment, per water regime across locations and across all experiments (joint analyses). For the six target traits (male flowering, anthesis-to-silking interval, grain yield, kernel number, 100-kernel fresh weight and plant height) 81, 57, 51 and 34 QTLs were identified in the four step-wise analyses, respectively. Despite high values of heritability, the phenotypic variance explained by QTLs was reduced, indicating epistatic interactions. About 80, 60 and 6% of the QTLs did not present significant QTL-by-environment interactions (QTL x E) in the joint analyses per environment, per water regime and across all experiments. The expression of QTLs was quite stable across years at a given location and across locations under the same water regime. However, the stability of QTLs decreased drastically when data were combined across water regimes, reflecting a different genetic basis of the target traits in the drought and well-watered trials. Several clusters of QTLs for different traits were identified by the joint analyses of the WW (chromosomes 1 and 8) and WS (chromosomes 1, 3 and 5) treatments and across water regimes (chromosome 1). Those regions are clear targets for future marker-assisted breeding, and our results confirm that the best approach to breeding for drought tolerance includes selection under water stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app