OPEN IN READ APP
JOURNAL ARTICLE

Combination of stromal-derived factor-1alpha and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization

Jian-Xing Yu, Xue-Fei Huang, Wei-Ming Lv, Cai-Sheng Ye, Xin-Zhi Peng, Hui Zhang, Long-Bin Xiao, Shen-Ming Wang
Journal of Vascular Surgery 2009, 50 (3): 608-16
19595531

BACKGROUND: Recruitment and entrapment of bone marrow-derived endothelial progenitor cells (EPCs) is important in vascular endothelial growth factor (VEGF)-induced angiogenesis. EPC mobilization and differentiation are modulated by stromal-derived factor-1alpha (SDF-1alpha/CXCL12), another important chemokine. In this study, we investigated the hypothesis that SDF-1alpha and VEGF might act synergistically on EPC-mediated vasculogenesis.

METHODS: EPCs were isolated and cultured from human peripheral blood, then transduced with retroviral vectors pBabe containing human VEGF(165) complimentary DNA (Td/V-EPCs) and pBabe wild-type (Td/p-EPCs). EPC migration activity was investigated with a modified Boyden chamber assay. EPC apoptosis induced by serum starvation was studied by annexin V assays. The combined effect of local administration of SDF-1alpha and Td/V-EPC transplantation on neovascularization was investigated in a murine model of hind limb ischemia.

RESULTS: Over-expression of hVEGF(165) increased SDF-1alpha-mediated EPC migration. SDF-1alpha-mediated migration was significantly increased when EPCs were modified with VEGF (Td/V-EPCs) vs when VEGF was not present (Td/p-EPCs) or when VEGF alone was present (Td/V-EPCs; 196.8 +/- 15.2, 81.2 +/- 9.8, and 67.4 +/- 7.4/mm(2), respectively P < .001). SDF-1alpha combined with VEGF reduced serum starvation-induced apoptosis of EPCs more than SDF-1alpha or VEGF alone (P < .001). To determine the effect of this combination in vivo, SDF-1alpha was locally injected alone into the ischemic hind limb muscle of nude mice or combined with systemically injected Td/V-EPCs. The SDF-1alpha plus VEGF group showed significantly increased local accumulation of EPCs, blood-flow recovery, and capillary density compared with the other groups. The ratio of ischemic/normal blood flow in Td/V-EPCs plus SDF-1alpha group was significantly higher (P < .01), as was capillary density (capillaries/mm(2)), an index of neovascularization (Td/V-EPCs plus SDF-1alpha group, 863 +/- 31; no treatment, 395 +/-13; SDF-1alpha, 520 +/- 29; Td/p-EPCs, 448 +/- 28; Td/p-EPCs plus SDF-1alpha, 620 +/- 29; Td/V-EPCs, 570 +/- 30; P < .01). To investigate a possible mechanistic basis, we showed that VEGF up-regulated the receptor for SDF-1alpha, CXCR4, on EPCs in vitro.

CONCLUSION: The combination of SDF-1alpha and VEGF greatly increases EPC-mediated angiogenesis. The use VEGF and SDF-1alpha together, rather than alone, will be a novel and efficient angiogenesis strategy to provide therapeutic neovascularization.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
19595531
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"