JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials.

Biomaterials 2009 October
The shelf life of implantable materials has rarely been addressed. We determined whether osteoconductivity of titanium is stable over time. Rat bone marrow-derived osteoblasts were cultured on new titanium disks (immediately after acid-etching), 3-day-old (stored after acid-etching for 3 days in dark ambient conditions), 2-week-old, and 4-week-old disks. Protein adsorption capacity, and osteoblast migration, attachment, spread, proliferation and mineralization decreased substantially on old titanium surfaces in an age-dependent manner. When the 4-week-old implants were placed into rat femurs, the biomechanical strength of bone-titanium integration was less than half that for newly processed implants at the early healing stage. More than 90% of the new implant surface was covered by newly generated bone compared to 58% for 4-week-old implants. This time-dependent biological degradation was also found for machined and sandblasted titanium surfaces and was associated with progressive accumulation of hydrocarbon on titanium surfaces. The new surface could attract osteoblasts even under a protein-free condition, but its high bioactivity was abrogated by masking the surface with anions. These results uncover an aging-like time-dependent biological degradation of titanium surfaces from bioactive to bioinert. We also suggest possible underlying mechanisms for this biological degradation that provide new insights into how we could inadvertently lose, and conversely, maximize the osteoconductivity of titanium-based implant materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app