Add like
Add dislike
Add to saved papers

Effect of potentiating exercise volume on vertical jump parameters in recreationally trained men.

High-force activities have demonstrated postactivation potentiation (PAP) and may enhance performance in athletes; however, the efficacy of high-force activities to generate PAP in recreationally trained men remains unclear. The purpose of this study was to investigate the effect of high-force back squat volume on vertical jump (VJ) height, ground reaction force (GRF), impulse (IMP), and takeoff velocity (TOV) in recreationally trained men. Sixteen recreationally trained men (age 24.56 +/- 2.10 years, height 174.53 +/- 8.54 cm, mass 84.59 +/- 14.75 kg, and 1 repetition maximum [1RM] back squat 124.71 +/- 17.58 kg) with at least 1 year of back squat experience completed 5 testing sessions separated by a minimum of 72 hours' rest. On session 1, subjects completed VJ testing without a potentiating exercise intervention (control condition) in a test-retest fashion (3 VJs, 5 minutes seated rest, and 3 more VJs) and performed 1RM back squat testing. Subjects completed the subsequent 4 testing sessions in a test-retest fashion (3 VJs, experimental condition, 5 minutes seated rest, and 3 more VJs) in random order. The 4 experimental conditions required subjects to perform the back squat using a load of 85% 1RM with volumes of 1 x 2, 1 x 3, 1 x 4, or 1 x 5. Analysis of variance revealed no significant (p > 0.05) condition by time interactions for any dependent variable; however, there were significant (p < 0.05) main effects for time for GRF (pre 2,123.74 +/- 422.86 N, > post 2,094.53 +/- 390.99 N) and IMP (pre 210.88 +/- 100.97 Nxs, > post 204.63 +/- 106.14 Nxs) but not for VJ or TOV. These results suggest that 85% 1RM back squat volume assignments do not produce a VJ potentiation response in recreationally trained men.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app