Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Estimating regional spatial and temporal variability of PM(2.5) concentrations using satellite data, meteorology, and land use information.

BACKGROUND: Studies of chronic health effects due to exposures to particulate matter with aerodynamic diameters
OBJECTIVES: In this study we examined the benefits of using aerosol optical depth (AOD) retrieved by the Geostationary Operational Environmental Satellite (GOES) in conjunction with land use and meteorologic information to estimate ground-level PM(2.5) concentrations.

METHODS: We developed a two-stage generalized additive model (GAM) for U.S. Environmental Protection Agency PM(2.5) concentrations in a domain centered in Massachusetts. The AOD model represents conditions when AOD retrieval is successful; the non-AOD model represents conditions when AOD is missing in the domain.

RESULTS: The AOD model has a higher predicting power judged by adjusted R(2) (0.79) than does the non-AOD model (0.48). The predicted PM(2.5) concentrations by the AOD model are, on average, 0.8-0.9 microg/m(3) higher than the non-AOD model predictions, with a more smooth spatial distribution, higher concentrations in rural areas, and the highest concentrations in areas other than major urban centers. Although AOD is a highly significant predictor of PM(2.5), meteorologic parameters are major contributors to the better performance of the AOD model.

CONCLUSIONS: GOES aerosol/smoke product (GASP) AOD is able to summarize a set of weather and land use conditions that stratify PM(2.5) concentrations into two different spatial patterns. Even if land use regression models do not include AOD as a predictor variable, two separate models should be fitted to account for different PM(2.5) spatial patterns related to AOD availability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app