Add like
Add dislike
Add to saved papers

Reduced uranium complexes: synthetic and DFT study of the role of pi ligation in the stabilization of uranium species in a formal low-valent state.

Reaction of UCl(4)(THF)(4) with 1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(4)Li(2) produced a complex formulated as [{1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(4)}UCl(3)][Li(THF)(4)] (1) that exhibits a nonagostic interaction between one of the carbon atoms of the central phenyl ring and the U metal center. This interaction leads to significant weakening of the corresponding C-H bond, thereby facilitating proton removal in consecutive transformations. Attempts to form trivalent uranium derivatives were carried out by reacting the same ligand dianion with in situ-prepared "UCl(3)". The reaction indeed afforded a trivalent species formulated as {1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(4)}U(mu-Cl)(3)[Li(THF)(2)](2) (2). The configuration of the ligand system in this complex is similar to that in 1, with the same type of arrangement of the central phenyl ring. Further reduction chemistry with a variety of reagents and conditions was examined. Reaction of 1 with 1 equiv of lithium naphthalenide at 0 degrees C did not afford 2 but instead gave a closely related U(III) complex formulated as {1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(4)}U(THF)(mu-Cl)(2)[Li(Et(2)O)(2)] (3). Both of the trivalent complexes 2 and 3 reacted thermally in boiling THF, undergoing oxidation of the metal center to afford a new tetravalent compound {1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(3)}U(THF)(mu-Cl)(2)[Li(THF)(2)] (4) in which the oxidation of the trivalent center occurred at the expense of the central phenyl ring C-H bond. Reaction of 1 with 3 equiv of lithium naphthalenide at room temperature afforded {{1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(3)}U(mu-Cl)(mu-[O(CH(2))(3)CH(2)])[Li(DME)]}[Li(DME)(3)] (5). In this species, the tetravalent metal center forms a six-membered metallacycle ring with a moiety arising from THF ring opening. Reaction in DME afforded reductive cleavage of the solvent accompanied by reoxidation of U to the tetravalent state. Reduction of 1 in DME with 2 equiv of potassium naphthalenide at room temperature gave a mixture of two compounds having very similar structures. The two different species [{1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(3)}UCl(OCH(3))][Li(DME)(3)] (6a) and [{1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(3)}UCl(2)][Li(DME)(3)] (6b) cocrystallized in a ratio very close to 1:1 within the same unit cell. The methoxide group was generated from cleavage of the DME solvent. We also attempted the reduction of 1 with a different reducing agent such as NaH in DME. After a slow reaction, a new species formulated as {1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(3)}U(mu-OCH(3))(3)(mu,eta(6)-Na)[eta(3)-Na(DME)] (7) was isolated in significant yield. Once again, the crystal structure revealed the presence of several methoxy groups coordinated to the U center in addition to the metalation of the ligand phenyl ring. To minimize solvent cleavage, reduction of 1 was also carried out at low temperature (-35 degrees C) and with a larger amount (4 equiv) of lithium naphthalenide. After suitable workup, the new species {[{1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(3)}U{1,3-[2,5-(i-Pr)(2)PhN horizontal lineC(CH(3))](2)C(6)H(4)}][Li(DME)(THF)]}.Et(2)O (8) was isolated in significant yield. Even in this case, the uranium atom is surrounded by the expected trianionic, ring-metalated ligand. However, a second ligand unit surrounds the metal center, being bonded through a part of the pi system. Reaction of 1 with excess NaH in toluene proceeded slowly at room temperature, affording a significant yield of {[{1,3-[2,5-(i-Pr)(2)PhNC( horizontal lineCH(2))](2)C(6)H(3)}U{1,3-[2,5-(i-Pr)(2)PhN horizontal lineC(CH(3))](2)C(6)H(4)}{Na(DME)(2)}][Na(DME)(3)]}.(1)/(2)C(7)H(8) (9) after crystallization from DME/toluene. Similar to 8, the complex still contains one ring-metalated trianionic ligand and one intact ligand that has regained the H atoms and restored the two imine functions. Although according to their connectivities, complexes 8 and 9 could be assigned with the formal oxidation states +2 and +1, respectively, density functional theory calculations clearly indicated that these species contain additional spin density on the ligand system with the metal center in its more standard trivalent state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app