Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals.

Molecular BioSystems 2009 December
Several factors are known to determine chromatin organization. However, the role of non-canonical DNA structure has not been studied in this context. Our recent observations indicated a widespread role of a particular non-canonical DNA structure, the G-quadruplex, or G4 motifs, in gene regulation. Herein, we first analyzed potential G4 (PG4) motif occurrence vis-à-vis nucleosome occupancy signals. Genome-wide analysis using reported nucleosome positions in Saccharomyces cerevisiae and human (ENCODE regions and 3239 promoters) showed exclusion of nucleosomes by regions that have a relatively high density of PG4 motifs (P < 0.0001). This was supported by the enrichment of PG4 motifs within DNase I hypersensitive sites, which generally exclude nucleosomes. Based on these, we asked whether PG4 motifs had any distinct regulatory function. Two non-overlapping gene-sets in humans were tested-with PG4-enriched (Set I) or nucleosome-enriched (Set II) promoters. Gene-sets I and II were enriched in distinct functions: apoptosis and cellular signaling vs. development and immunity-related, respectively (P < 0.01). Sets I and II also showed different tissue-specific expression in 35 normal human tissues. In S. cerevisiae, we noted significant enrichment of PG4 motif regulated genes in cellular response to heat-shock, while genes with nucleosome-enriched promoters were not significantly represented. Our results show a structural motif as a possible nucleosome exclusion signal for the first time, and predict an alternate/additional regulatory role of G4 motifs, which could be distinct from gene regulation by remodeling of nucleosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app